
Learning Robotic Tasks from Video Demonstrations

Jeremy Collins
jcollins90@gatech.edu

Alan Hesu
ahesu6@gatech.edu

Cody Houff
chouff3@gatech.edu

Dane Wang
ywang3943@gatech.edu

Abstract

Training an agent to solve a wide variety of complex
tasks has remained an open problem for decades; long-
horizon, reward-sparse environments are notoriously diffi-
cult to learn from scratch via reinforcement learning. One
such domain is robotic manipulation, which has been a
long-standing problem facing classical control theorists
and roboticists alike. At the core of this problem is the curse
of dimensionality – the space of possible trajectories is so
large that a complete search through this space to learn a
policy is intractable for even short-horizon tasks. Addition-
ally, very precise sensing is often required for robustness but
often leads to expensive solutions that are prone to hard-
ware failure. We present an alternative approach that uses
visual data alone to learn a control policy for a robotic arm
by observing expert video demonstrations. We implement
and test several models, accomplishing an 85% success for
a pick-and-place task.

1. Introduction

Robot arms are being increasingly used in factories, dis-
tribution centers, and even hospitals to increase our quality
of life. However, reliable robot arm planning and control re-
main relatively challenging both in industry and academia.
Because of the large number of joints, the physical model is
complex and high-dimensional, which makes the problem
hard to solve from both classical control and deep learning
approaches. Our goal for this project is to build an end-to-
end deep learning model that can control the robot arm for
a specific task.

Learning robotic manipulation tasks requires knowledge
of the robot state and the surrounding environment. While
typical reinforcement learning approaches have used priv-
ileged information of the joint space and object positions
known directly from the environment simulation [5], such
information may not always be known or available. To de-
termine a robot arm’s state space and sense its manipula-

tion target, it is common to use a single observing camera
mounted on the robot or pointed at the robot to capture the
scene. The use of a camera lends itself naturally to predict-
ing motion and control policies. In a collaborative robotic
manipulation task, for example, each robot would like to ob-
serve the other and predict the trajectory in the short horizon
in order to avoid collisions. This capability for action pre-
diction is akin to generating a control policy by applying a
predictive model autoregressively.

At the same time, reinforcement learning normally strug-
gles to generate control models that can handle long horizon
or sparse reward environments as shown in [2]. The appli-
cation of reinforcement learning requires a great setup of
the simulation environment and the corresponding reward
function which could both be difficult to accomplish for a
complex environment or long-horizon tasks.

In this project, we would like to propose an alternative
approach to generate a robot arm control policy: behavioral
cloning (BC). We build an end-to-end BC model for a pick-
and-place task that is trained on video and action data from
an expert demonstrator which can be either a human being
or a pre-trained model. We showed that our BC model can
learn a robot arm control strategy from the expert and then
accomplish the same tasks autonomously.

Current state-of-the-art methods for this spatiotempo-
ral reasoning often involve using convolutional neural net-
works (CNNs) to embed spatial information and long short-
term memory (LSTMs) for prediction from a temporal se-
quence [13]. Applying advances in language modeling, we
are using a transformer [18] in place of the LSTM for robot
action prediction. We show that this approach offers accu-
racy that matches or exceeds the LSTM method in robot
behavior cloning.

We also train models using the privileged robot and ob-
ject state information as inputs instead of the video data
from an external observing camera. The performance of
these models is comparable to the models trained using the
video data, showing that usage of the CNN to embed the
spatial information from the environment state is sufficient
to recover the necessary information to accomplish the task

1

that an expert or agent with more privileged information
would require.

By using video data from the camera directly, we reach
an 85% success rate for a pick-and-place task by combing a
CNN encoder, a transformer, and an action prediction net-
work.

2. Related Works
2.1. Behavioral cloning

Behavioral cloning (BC) is a subset of imitation learning
that involves training a model on observation-action pairs
to replicate the actions and behaviors in the training dataset.
While it typically relies on labeled observation-action data,
recent works have demonstrated successful approaches that
infer actions from solely observation data, replicating the
performance of other state-of-the-art learning from demon-
stration (LfD) methods [11], [16].

This work has been leveraged to achieve novel perfor-
mance in high dimensional environments such as Minecraft,
where BC along with other fine-tuning methods were
trained on a large volume of video data to achieve game
playing performance comparable with human players [2].
Hard-exploration tasks such as Minecraft have been histor-
ically impossible to learn from scratch via reinforcement
learning. Baker et al. utilize transformer network archi-
tectures for video prediction for generating actions as game
inputs (ie. keyboard, mouse) from video data, using this
method for both labeling large volumes of unlabeled video
data and subsequently using the labeled data for BC.

2.2. Robot manipulation

Many current approaches that use cameras for robotic
manipulation require the ability to estimate a robot’s pose
in 3D space. This may involve placing fiducial markers on
different joints on the robot and undergoing a calibration
procedure. A potentially simpler approach involves using a
learned model to implicitly transform the 2D image to 3D
space and perform pose estimation. Sithamparanathan et al.
demonstrate a method using a CNN to generate a 3D point
cloud from a 2D image, and the point cloud is then mapped
to the most likely robot pose [15]. Lee at al. also utilize a
CNN-based approach, though their output involves placing
keypoints in the 2D image and then using perspective-n-
point (PnP) and known forward kinematics of the robot to
determine the 3D pose [9]. Widmaier et al. use a random
forest approach trained on images containing depth infor-
mation. They also propose a DISP distance metric, which
can be more suitable for measuring error in pose estima-
tion for multi-DOF robots compared to simple euclidean
distance [20].

While CNNs are capable of spatial reasoning for instan-
taneous robot state estimation, predicting the next robot

action also requires temporal reasoning using information
from a sequence of past robot states. Although 3D convo-
lution is a potential solution to this, it is often prohibitively
expensive. LSTMs have long been used for temporal mod-
eling, including motion prediction applications [1]. They
have also been extended to perform the spatiotemporal rea-
soning necessary for the application of robot motion and ac-
tion prediction. Rodrigues et al. use a CNN for pose estima-
tion by estimating keypoints. These keypoints are then used
to construct a sequence to predict future keypoints using an
LSTM [13]. By replacing the traditional fully connected
architecture in an LSTM with a CNN, Shi et al. allow the
LSTM itself to perform spatial reasoning, enabling a more
end-to-end model architecture [14].

2.3. Transformers

Transformer-based methods use an architecture that re-
lies on an attention mechanism which considers relation-
ships between elements of an input sequence to generate
low-dimensional embeddings, from which the desired out-
put may be decoded. The use of multiheaded attention en-
ables a much larger degree of parallelization of the data pro-
cessing as opposed to the sequential processing tradition-
ally used in recurrent neural networks and has been demon-
strated to show state-of-the-art performance on a number of
language processing and computer vision tasks [19].

However, the use of transformers in robot motion predic-
tion is less thoroughly investigated. Levine et al. demon-
strate a convolutional neural network (CNN) model trained
on real-world video data for grasping and servoing of a
robotic arm in specific manipulation tasks [10]. In addi-
tion to a convolutional long short-term memory (LSTM)
approach, Finn et al. use a spatial transformation predic-
tion (STP) method for generating affine transformations for
motion prediction from videos. They demonstrate trained
results on both robotic and human motions [4]. Multiple
datasets have been created across a wide variety of robotic
manipulation tasks. Using their crowd-sourced RoboTurk
dataset, Mandlekar et al. investigate BC but report poor re-
sults given the diversity of the manipulation tasks [12].

3. Methods
3.1. Task description

The environment setup from the expert demonstration
data [5] consists of a single Panda robotic arm on a flat sur-
face, as shown in Fig 1. There is a single red cube, which
the robot attempts to pick up and move to the goal loca-
tion, which is represented by a collision-less yellow cube.
The robot’s action space is represented by a 1x4 vector con-
sisting of the x, y, and z velocity commands for the end ef-
fector and a single value representing the gripper position.
Because the end-effector is not granted any rotational de-

2

Figure 1. Panda-Gym simulation Environment

Figure 2. Example input frame

grees of freedom, this vector is sufficient to capture all pos-
sible movements. The observation space, generated from
the simulation environment and containing all information
needed to represent the robot and task state, is a 1x25 vec-
tor. This contains the gripper speed and position and the
position of its finger, the position of the goal, and the po-
sition, orientation, and linear and rotational velocity of the
object. A camera observing the environment also captures
images of the environment, including the robot, goal, and
object. An example of such a frame is seen in Fig 2.

3.2. Machine learning models

The models we implemented can be divided into four
sections as shown by Fig 3. The horizontal axis demar-
cates whether the instantaneous information from a single
timestep is used as an input or if a sequence of multiple
timesteps is used. The vertical axis divides the input rep-
resentation between the privileged environment state infor-
mation, which is represented as a 1x25 vector, or the frame
recorded by the camera, which is resized to a 96x96x3 RGB
image. The upper left corner of the matrix in Fig 3 repre-
sents the least complex model, while the lower right cor-
ner of the matrix represents the models with the highest

complexity. This is due to the input format and the ways
in which the input information is processed before being
passed into the action predictor network. In the right half,
a CNN network is used to process image frames, and in the
bottom half, an LSTM or transformer is used as a sequence
model to process the sequential input.

3.3. Basic Behavior Cloning

The first model is the basic BC model, which is shown
in 3a. This architecture functions as the foundation of the
other models presented in the figure and is based on the
BC method described in [3] and implemented in [6]. This
combines a variational autoencoder (VAE) with a discrimi-
nator mapping the latent space to action predictions to build
a data-efficient learning architecture. Specifically, our im-
plementation of the BC action predictor is shown in 4. The
input features are fed into a multilayer perceptron (MLP),
which encodes the input’s latent space. From this latent
space, an action probability distribution is learned using
fully connected layers to predict the mean and variance of
the distribution, which is then sampled to generate the pre-
dicted action. While Chen at al. show high performance in
the domain of video game playing, we show that this gener-
ative modeling can also be applied to robot arm manipula-
tion.

The loss function of our BC model is shown in Equa-
tion 1 and is composed of three main terms. The first term,
−logP (x|N (µ, σ)) is the negative log probability of the
true action given the predicted action distribution. This rep-
resents how well the action distribution predicts the true ac-
tion. The second term, αH(x), is the entropy of the pre-
dicted action distribution, which minimizes the degree of
uncertainty in the distribution. The final term, λ||w||22, is an
L2 weight regularization term that helps prevent the model
from overfitting on the training data. The weight terms α
and λ modify how much the entropy and L2 regularization
term contribute to the overall loss function respectively.

This loss function enables the probabilistic predictive
modeling described above, which is necessary to accurately
predict the control inputs for the robotic manipulation task.
A more deterministic loss function and modeling approach
such as mean squared error (MSE) loss was observed to be
insufficient. To minimize the euclidean distance between
the predicted and actual actions, the model ends up predict-
ing the overall mean of the training data.

loss = −logP (x|N (µ, σ))− αH(x) + λ||w||22 (1)

3.4. LSTM + Behavior Cloning

Instead of using single timesteps as the input, adding
some temporal understanding of the environment state to

3

Figure 3. Type of Models

Figure 4. Behavior Cloning Structure

the model may improve its task reasoning by better con-
textualizing its own actions and movements as well as any
motion in the object. To accomplish this, a long-short

term memory (LSTM) architecture was used as a sequence
model [7]. As shown in Fig 3c, a sequence of five consecu-
tive 1x25 environment state vectors from t − 4 to t is used
as an input to the LSTM. The LSTM itself consists of two
layers with a hidden dimension size of 32. The final hidden
state in the LSTM is then projected back to a 1x25 vector
using a final fully connected layer, which now represents
the model’s understanding of the environment along with
prior temporal information. This vector is then passed into
the behavior cloning architecture described in 3.3

3.5. Transformer + Behavior Cloning

An alternative to the LSTM as a sequence model is the
transformer. A causally masked encoder-decoder trans-
former is used based on the time series forecasting architec-
ture described in [21]. As with the LSTM, the transformer
input consists of a sequence of five environment state vec-
tors. The chosen transformer model uses a hidden dimen-
sion of 32, 1 encoder layer, 1 decoder layer, and two atten-
tion heads. Similar to the LSTM, the last token from the

4

output of the decoder is projected back to a 1x25 vector and
passed into the behavior cloning architecture in 3.3.

3.6. CNN + Behavior Cloning

As mentioned before, instead of using the 1x25 obser-
vation space vector, we also tried to take the 96x96x3 raw
image of the simulation environment as the input. This al-
gorithm is shown in Fig 3b, where a CNN is added to project
the image into a visual feature vector that can be used by
the behavior cloning model. The CNN network we used is
called the MAGICAL CNN from [17]. The CNN takes the
environment as input and returns a 1x128 learned visual fea-
ture vector which is then passed into the behavior cloning
architecture described in 3.3.

3.7. CNN + LSTM + Behavior Cloning

This algorithm is a combination of the 3.6 and 3.4, and it
is shown as Fig 3d. It takes a sequence of five consecutive
96x96x3 simulation environment pictures as the input and
then passes into the CNN and LSTM networks described
above. The output is then passed to the behavior cloning
architecture described in 3.3 like all other models.

3.8. CNN + Transformer + Behavior Cloning

Just like 3.7, this model also takes a sequence of five
consecutive 96x96x3 simulation environment images as the
input. The only difference is that we are using the trans-
former from 3.5 instead of LSTM as the sequential model.
This model is also represented in Fig 3d.

4. Data Collection
We collect a labeled dataset including videos of robot

arm operations with corresponding control commands. For
our simulation environment, we choose panda-gym. A sam-
ple simulation environment is presented as Figure 1.

Panda-gym is an open-source goal-conditioned environ-
ment for Panda robotic arm based on OpenAI Gym. [5]. It
includes pre-trained models that can control a robot arm to
complete five different simulated tasks: reach, push, slide,
pick and place, and stack. There is also a virtual camera,
which allows for the recording of RGB videos of the robot
arm operation.

For this project, we chose to generate a dataset of demon-
strations on the pick and place task, each of which lasts for
50 simulation steps. The Panda-gym environment randomly
initializes the position of the goal and object. If the robot
arm can pick up and target an object and move it to the goal
position, the task is considered a success. The pretrained
model within the Panda-gym has a 98.8% success rate. The
speed at which the robot can pick up and move the object
and keep it in the desired goal position is also measured.
This metric arises from the reward function in the reinforce-
ment learning environment used to train the expert agent,

which receives a reward of -1 for each step the object is not
in the goal and 0 for each step it is in the goal, generating
a total reward per demonstration in the range [-50, 0]. We
convert this to a positive score value by subtracting the ab-
solute value of the accrued reward from the maximum of 50,
yielding a score in the range [0, 50], where a higher score
indicates more effective completion of the task. The expert
model obtains an average score of 41.96.

We use this pretrained expert model to generate the
dataset, which consists of 3000 demonstrations, with each
demonstration including the 1x25 observation space, 1x4
action command, and recorded image frame for each
timestep. Each demonstration is 50 steps, so altogether,
150000 data points were collected and used. The set of 3000
demonstrations were then split into a training and testing
dataset, with the training dataset containing 80% of the data
and the testing dataset containing the other 20%. Because
the environment used in the generation of the dataset also
randomly initializes the starting positions of the goal and
object, the dataset is representative of the possible states the
robot may encounter during evaluation of the model.

To load data for the single input models (Fig 3a, b), a sin-
gle observation vector or frame is used as the input, and the
corresponding action vector is used as the ground truth pre-
diction. To generate the sequential inputs for the sequence
models (Fig 3c, d), sequences of five contiguous observa-
tions or image frames are collected from each demonstra-
tion. Because evaluating the model requires starting the
simulation at time t = 0 without any information from
prior timesteps, sequences at the start of each demonstration
that don’t contain enough frames from the actual sample are
padded with zeros so that the model is still trained on data
representative of the initial state of the task.

5. Experiments and Results
5.1. Training

All of the models were trained on the 2400 demonstra-
tion samples found in the training dataset using the Adam
optimizer [8] with a learning rate of 1e-4 and batch size of
32. In the loss function (1), the entropy weight α was set
to 1e-3, and the L2 weight λ was set to 1e-6. Each model
was trained until the training and testing loss were observed
to converge. A plot comparing the convergence rates of the
testing loss for each model is shown in Fig 5.

5.2. Evaluation criteria

To evaluate the performance of a model, we select two
criteria. The first criterion is the success rate. We run 1000
tests in simulation after the training process is finished and
then record the number of times that the model is able to
move the object to the goal. The higher this success rate is,
the more this model learned from the expert.

5

Input Model Score Success Rate (%) # Parameters Batch/s
State Expert 41.96 98.9
State Basic BC 32.18 80.6 2189 121.49
State Transformer+BC 36.68 89.7 21894 59.52
State LSTM+BC 34.28 82.5 19014 75.69
Image CNN+BC 31.81 82.5 755405 58.02
Video CNN+Transformer+BC 32.17 84.1 785101 33.82
Video CNN+LSTM+BC 33.67 86.1 788813 31.53

Table 1. Model performance metrics

Figure 5. Test loss per epoch

Figure 6. Comparing privileged vs video only results

The second criterion is the score, which is explained in
section 4. The value of the score measures the speed of the
model to complete the mission. The faster a model solves
the problem, the higher score it will receive.

We also measure two metrics concerning the size and
computation requirements to train each model. For each

model, the number of trainable parameters as well as the
training speed measured as batches per second are recorded.
These two values indicate the complexity and expressivity
of each model, where a higher number of parameters may
allow the model a higher degree of expressivity, while a
higher batch/s indicates the model may train more quickly.

5.3. Results and analysis

A table describing the training results and the metrics for
each model is shown in Table 1. The expert demonstrator
itself is measured as well, achieving both a high score and
success rate, showing that it both quickly and consistently
accomplishes the task. From the test results shown above,
all 6 models we trained are able to complete the pick-and-
place task with a relatively high success rate which means
our models do learn from the expert about how to operate
the robot arm via Behaviour Cloning.

We observe that models that take visual data as input
achieve success rates comparable with that of models with
access to privileged, low-dimensional information about the
environment and task state as shown in Figure 6. This result
demonstrates that the CNN and sequence models success-
fully extracted task-relevant information from images and
videos only, and shows that this information is nearly as
salient as a task-specific, hand-crafted representation of the
environment state.

By comparing the performance of the sequential models,
we find that modeling temporal information can add slight
improvements to the model performance, as each sequential
model outperforms the corresponding single input model.
Furthermore, the transformer models perform as well or
better than the LSTM models. These results confirm the
increased performance in sequence modeling displayed by
transformers in recent work [21], [18].

As shown by the test loss plot in Fig 5, the models all
begin to converge without overfitting on the training data.
This is because all of the data was generated with random-
ized environment initialization, so the 2400 training demon-
strations sufficiently capture the possible configurations in
the testing dataset as well. However, there is still a gap
in performance between the trained models and the expert

6

demonstrator. Some models may be trained for even longer,
allowing the loss to continue to decrease, though larger
models such as those including a CNN would require far
more computation to do so. The autoregressive nature of
the BC method also contributes to a lower performance and
potential lack of generalizability. If the model sees an in-
put that it has not been trained on and is out of distribution,
it may make a poor prediction. This poor prediction then
leads to an even worse state in the next timestep, with the
error propagating because the model has no understanding
of how to recover from these failing trajectories.

5.4. Model size

The size and training speed of each model are also shown
in Table 1. The basic BC model is the simplest and fastest
training model, while adding sequence modeling increases
the model size by approximately an order of magnitude.
Adding the CNN for processing images further increases
the size by another order of magnitude, as the CNN’s role
in processing spatial information in an image dominates the
contribution to the model size. The increase in complexity
is also reflected by the batch/s values. Notably, the sequence
models’ addition to the CNN in the two video models show
a significant decrease in batch/s, despite the proportionally
minimal increase in model size. This is potentially due to
the corresponding increase in size of the input itself as well
as the sequential calculations in a model such as an LSTM.

5.5. Failure modes

From qualitatively observing the resulting evaluations of
the models in simulation, it is not clear why some environ-
ment states cause the model to fail. Some of these failing
trajectories will closely miss the object or drop it, while oth-
ers involve the robot arm moving to an entirely different
position. Some failure modes for the image input, however,
can be more clearly explained by the model’s poor depth
perception and potential for objects to be occluded. Exam-
ples are shown in Fig 7. In Fig 7a, the robot arm is fully
occluding both the goal and object from the camera, so the
model does not know where to move. In Fig 7b, the goal
slightly occludes the object, so the model is poor at recog-
nizing the location of the object and fails to move the robot
arm to pick it up. Finally, in Fig 7c, the object is occlud-
ing the goal. This most clearly illustrates the model’s poor
depth perception, as the robot is holding the object at what
the model perceives is the goal location, even though the
actual location is farther back along the camera depth direc-
tion.

5.6. Dataset size

We conducted additional experiments using different
sizes of demonstration datasets, with the models retrained
using 240 demonstrations, 2400 demonstrations (Table 1),

(a) Fully occluded object and goal (b) Goal occludes object

(c) Object occludes goal

Figure 7. Different failure modes for models using image inputs

Figure 8. Model performance vs dataset size

and 24000 demonstrations. The results of these tests are
shown in Fig 8. While there is a clear trend of increas-
ing dataset size improving model performance, the overall
impact is relatively small. Among the models, the largest
range in performance is a success rate of 14%, while the
smallest range is only 0.9%. This shows that the models are
able to learn the given task even with a smaller number of
demonstrations, suggesting that the behavioral cloning ap-
proach can be successful when gathering expert demonstra-
tions is difficult and the size of the dataset may be limited.

7

5.7. Transformer size

Our original transformer model was relatively small
compared to the original model proposed in [18]. To inves-
tigate whether transformer size would affect performance,
we tested a version of the CNN + Transformer + BC model
with larger input layers, more encoder and decoder layers,
and more attention heads. For the same training time, the
model performed slightly worse, obtaining a lower score of
30.01 compared to 32.17 and a lower success rate of 83.1%
compared to 84.1%. This performance may be due to the
larger size and slower training speed of the model, as it had
16% more trainable parameters. In general, however, these
results suggest a more expressive model is not necessary to
achieve higher performance on the task.

6. Conclusion

We successfully built an end-to-end model that learns to
control a robot arm by observing video demonstrations of
a robot arm solving a pick and place task and achieves an
85% success rate.

We also analyze the performance of the model when it
takes the environment state or raw images as the input. We
prove that the CNN is able to extract enough information
about the environment for our model to learn from the ex-
pert.

In addition, we prove that our BC model could be trained
with a reasonable amount of demonstrations, taking only
240 demonstrations to reach an 80% success rate. The
model achieves 95% relative performance with only one-
tenth of the maximum data used which means we can easily
apply this model to different tasks without needing an ex-
cessive amount of video demonstrations.

There are many potential future works that can be ex-
tended from this project. For instance, we could fine-tune
the model to see if it is could achieve better performance
or improve the robustness of our model. One idea is to use
images from different perspectives to investigate whether
the model could generalize to these different angles. Lastly,
we would love to explore the possibility of applying our
model to other domains such as reward sparse environments
where RL may not work or more complex robotic tasks.
Our model is general, so we would expect it to work in a va-
riety of environments. Lastly, we believe as access to data
accelerates behavior cloning will play an increasing role in
future automation technologies that will help make our lives
better.

References
[1] Florent Altché and Arnaud de La Fortelle. An LSTM net-

work for highway trajectory prediction. In 2017 IEEE 20th
International Conference on Intelligent Transportation Sys-

tems (ITSC), pages 353–359, Oct. 2017. ISSN: 2153-0017.
2

[2] Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga,
Jie Tang, Adrien Ecoffet, Brandon Houghton, Raul Sampe-
dro, and Jeff Clune. Video pretraining (vpt): Learning to act
by watching unlabeled online videos, 2022. 1, 2

[3] Brian Chen, Siddhant Tandon, David Gorsich, Alex Gorodet-
sky, and Shravan Veerapaneni. Behavioral cloning in atari
games using a combined variational autoencoder and predic-
tor model. In 2021 IEEE Congress on Evolutionary Compu-
tation (CEC), pages 2077–2084, 2021. 3

[4] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsuper-
vised learning for physical interaction through video predic-
tion, 2016. 2

[5] Quentin Gallouédec, Nicolas Cazin, Emmanuel Dellandréa,
and Liming Chen. panda-gym: Open-source goal-
conditioned environments for robotic learning, 2021. 1, 2,
5

[6] Adam Gleave, Mohammad Taufeeque, Juan Rocamonde,
Erik Jenner, Steven H. Wang, Sam Toyer, Maximilian
Ernestus, Nora Belrose, Scott Emmons, and Stuart Rus-
sell. imitation: Clean imitation learning implementations.
arXiv:2211.11972v1 [cs.LG], 2022. 3

[7] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997. 4

[8] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2014. 5

[9] Timothy E. Lee, Jonathan Tremblay, Thang To, Jia Cheng,
Terry Mosier, Oliver Kroemer, Dieter Fox, and Stan Birch-
field. Camera-to-Robot Pose Estimation from a Single Im-
age. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 9426–9432, May 2020. ISSN:
2577-087X. 2

[10] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz,
and Deirdre Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data col-
lection. The International Journal of Robotics Research,
37(4-5):421–436, 2018. 2

[11] YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey
Levine. Imitation from observation: Learning to imitate be-
haviors from raw video via context translation, 2017. 2

[12] Ajay Mandlekar, Jonathan Booher, Max Spero, Albert Tung,
Anchit Gupta, Yuke Zhu, Animesh Garg, Silvio Savarese,
and Li Fei-Fei. Scaling robot supervision to hundreds of
hours with roboturk: Robotic manipulation dataset through
human reasoning and dexterity. In 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 1048–1055, 2019. 2

[13] Iago Richard Rodrigues, Marrone Dantas, Assis Oliveira
Filho, Gibson Barbosa, Daniel Bezerra, Ricardo Souza,
Maria Valéria Marquezini, Patricia Takako Endo, Judith Kel-
ner, and Djamel H. Sadok. A framework for robotic arm pose
estimation and movement prediction based on deep and ex-
treme learning models, May 2022. arXiv:2205.13994 [cs].
1, 2

[14] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung,
Wai-kin Wong, and Wang-chun Woo. Convolutional LSTM

8

Network: A Machine Learning Approach for Precipitation
Nowcasting, Sept. 2015. arXiv:1506.04214 [cs]. 2

[15] Kiruthikan Sithamparanathan, Sarangan Rajendran, Pirakash
Thavapirakasam, A.M. Harsha, and S. Abeykoon. Pose
Estimation of a Robot Arm from a Single Camera. In
2021 3rd International Conference on Electrical Engineer-
ing (EECon), pages 131–136, Sept. 2021. 2

[16] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral
cloning from observation, 2018. 2

[17] Sam Toyer, Rohin Shah, Andrew Critch, and Stuart Russell.
The magical benchmark for robust imitation. Advances in
Neural Information Processing Systems, 33:18284–18295,
2020. 5

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention Is All You Need, Dec. 2017.
arXiv:1706.03762 [cs]. 1, 6, 8

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2017. 2

[20] Felix Widmaier, Daniel Kappler, Stefan Schaal, and Jean-
nette Bohg. Robot arm pose estimation by pixel-wise regres-
sion of joint angles. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 616–623, May
2016. 2

[21] Neo Wu, Bradley Green, Xue Ben, and Shawn O’Banion.
Deep Transformer Models for Time Series Forecasting: The
Influenza Prevalence Case, Jan. 2020. arXiv:2001.08317 [cs,
stat]. 4, 6

A. Team Contributions Table
Name Contribution

Alan Hesu Model development, model training and tuning, data exploration
Cody Houff Model development, model training and tuning, data collection
Dane Wang Data and results analysis, report, poster

Jeremy Collins Training pipeline development, sequence model development

9

	. Introduction
	. Related Works
	. Behavioral cloning
	. Robot manipulation
	. Transformers

	. Methods
	. Task description
	. Machine learning models
	. Basic Behavior Cloning
	. LSTM + Behavior Cloning
	. Transformer + Behavior Cloning
	. CNN + Behavior Cloning
	. CNN + LSTM + Behavior Cloning
	. CNN + Transformer + Behavior Cloning

	. Data Collection
	. Experiments and Results
	. Training
	. Evaluation criteria
	. Results and analysis
	. Model size
	. Failure modes
	. Dataset size
	. Transformer size

	. Conclusion
	. Team Contributions Table

