
Combination and Benchmark of RL Models
Dane Wang Cody Houff Etienne Sudre

I. INTRODUCTION

Atari games have been a long-standing benchmark in the
reinforcement learning (RL) community for the past decade.
This benchmark was proposed to test general competency
of RL algorithms. In this environment, the frames of the
game are inputted into the algorithms as observations. The
RL community turned toward Deep Learning and Neural Net-
works in 2013 leading to multiple breakthroughs in algorithm
development. In this project, we wanted to understand what
part some of those algorithms played in the development of the
current state of the art algorithms. To do so, we benchmarked
several advanced and classical algorithms on the same Atari
Game, Space Invaders, where a laser cannon tries to defend
Earth against invading aliens.

To better understand the properties and performances
of different algorithms, we extracted base algorithms from
Rainbow (an algorithm that combines six different improved
DQN algorithms). We would also like to explore new combi-
nations and create our own RL models, so we implemented
three combination algorithms that have not been originally
explored. We tested Rainbow, these baselines algorithms, and
our customized algorithms on Cartpole which is a simple but
classic environment for RL.

II. RELATED WORKS

There has been a lot of work done in the area of deep
reinforcement learning. From classic DQN to advanced Alpha
zero [20], many researchers proposed new ways to improve
the performance of the RL algorithms. In this section, we
are going to discuss some of them and we will discuss the
algorithms we worked with.

A. Deep Q Network (DQN)

In order to use deep learning and neural networks with
reinforcement learning, Deep Q Networks were developed
based on the Q-learning algorithm allowing the estimation of
the Q function. This function estimates the values of state
action pairs in a reinforcement learning concept. This work
was the first to produce an end-to-end evaluation of a state
action pair without hand-crafted features precomputed on the
input. This networks apart from taking directly the image of
the Atari games it is trying to master also introduce two
main ideas. The first idea is the use of a replay buffer,
by storing every transitions and training the network on a
random selection of all the previous transitions, it is possible
to increase the data efficiency of the learning process as well
as smooth the distribution of transitions. Indeed after some
learning steps, the agent starts to develop a behaviour leading it

Fig. 1. Rainbow performances

to certain region of the state space more than others providing
an unbalanced distribution of the states over the state space.
The second idea introduced by DQN is the use of a target
network during the update of the network weights. This target
network is the same as the evaluation network but is not
updated as frequently. It starts with the same weights, it is
not updated for a few training steps and is then brought back
to the evaluation network weights. This algorithm achieved
state of the art performance on several Atari games and even
went beyond the human performance on some games.

B. Rainbow

Another interesting algorithm we found is Rainbow[9].
It is an algorithm that combines six different improved DQN
models and achieve better performance. The six models that
are used are Double DQN, Dueling DQN, Prioritized Re-
play, Multi-step Learning DQN, Noisy Net, and Distributional
DQN.

Since these models are built based on the same frame-
work, they really work well together. The evaluation of the
rainbow and each individual algorithm are shown below in
Figure 1. Rainbow really made a big improvement compared
with each individual model as shown in the figure.

A lot of our work is based on the rainbow and the six
DQN algorithms it consists of. The explanation of these six
improved DQN algorithms and what improvements they made
to the original DQN is presented below.



Fig. 2. Network structure of DQN (top) and Dueling DQN (bottom)

C. Double Deep Q-Learning

As discussed in class, one of the main problems of DQN
is that the same Q target network is used to both estimate the
next Q value and choose the next action. This will result in a
higher estimation of the Q value and limit its performance.
DDQN [8] decouples the process of value estimation and
action selection. The Q target network is still responsible for
the Q value estimation, but we will use the Q network to
determine the next action that is going to be applied.

D. Dueling Deep Q-Learning

The main difference between Dueling DQN [22] and
DQN is the network structure. The structure of the Dueling
and DQN network is shown in 2 [22] Instead of getting the Q
value directly, Dueling DQN splits it into two state functions
V and A. V is used to evaluate the value of the state, and it
is only related to the state. A is used to evaluate the value of
an action, and it is related to both state and action.

Then our final Q value can be represented as the fol-
lowing formula 1 where θ is the shared parameters of the first
few layers, α is the parameters of the fully connected layer
for action, and β is the parameters of the fully connected layer
for states.

Q(s, a, θ, α, β) = V (s, θ, β) +A(s, a, θ, α) (1)

For some specific situations, the Q values of the system
only depend on the state, not the action. By splitting the state
and action, dueling DQN can give a more accurate estimation
for some applications, and increase the stability of the model.

E. Multi-step (N-step) Deep Q-Learning

Traditionally, DQN uses the current reward and the
estimated Q value of the next step to evaluate the loss which
is represented as equation 2.

Loss = (rj + γmax
a

Q̂(sj+1, a, θ
−)−Q(sj , aj , θ))

2 (2)

However, multi-step DQN [1] will use the future N steps
to calculate the loss. This could be represented as equation 3
below.

Fig. 3. TD error

Loss =
(∑N−1

k=0 γkrt+k + γN maxa Q̂(st+N , a, θ− −Q(st, at, θ))
)2

(3)
In DQN, the deviation of the network parameters in the

early stage of training is large, because we basically know
nothing about the system. It will result in a large estimation of
the target value which affects the performance of the network.
However, multi-step learning appears to solve this problem. In
multi-step learning, the immediate reward is exactly obtained
by interacting with the environment, so the target value in
the early stage of training can be estimated more accurately,
thereby speeding up the training. [21]

F. Prioritized Replay

Prioritized Replay is built on top of experience replay
buffers, which allow a reinforcement learning (RL) agent to
store experiences in the form of transition tuples, usually
denoted as (st, at, rt, st + 1). In contrast to consuming
samples online and discarding them thereafter, sampling from
the stored experiences means they are less heavily “correlated”
and can be re-used for learning. [16]

Replay buffers sample the experiences randomly, but
Prioritized Replay sample the data based on priority. The
priority is determined based on TD error which indicates how
far the current prediction function deviates from this condition
for the current input. It can also be shown in the figure below.

If there is a large TD error on a prediction, it means
that there is still a lot of room for improvement in the
prediction accuracy, and the more this sample needs to be
learned. In other words, this sample has a higher priority.
With Prioritized Replay, the network can learn how to get
an accurate prediction with fewer data needed and thereby
speeding up the training.

G. Distributional DQN

In traditional DQN, we use a neural network to output
an expected Q value to evaluate an action at a specific state.
However, we would output the distribution of Q value in
Distributional DQN [3]. It will be like if we choose action
a, there is a 10% of chance that the reward is 100 and 20%
receive an 80, etc. The total possibility will add up to 1.

With the singular expected Q value, there is still a lot
of information ignored. For example, if two actions can get
the same value expectation of 20. The first action will get 10
for 90% of the time and 110 for the rest 10% of the chance.
The second action would receive 25 in 50% of the time and
15 for the other 50% of the time. Although the expectations
are the same, in order to reduce the risk, you should choose



the latter action, and only output the expected value without
seeing the hidden risk behind it.

Distributional DQN will provide a more thorough eval-
uation of the action and help the algorithms choose the safer
action and improve their stability.

H. Noisy Net

During the training of an agent, one of the biggest chal-
lenges is to find a way to balance exploration and exploitation.
In traditional DQN, we normally apply the ϵ-greedy strategy,
that is, a random strategy is adopted with the probability of
ϵ, and the exploratory nature of the system is increased by
adopting a larger ϵ in the early stage of training, and the
stability of the system is achieved by reducing ϵ in the later
stage of training.

Noisy Net DQN provides another approach to this
challenge. By adding some random noises (normally Gaussian
noise) to the network, it will add some uncertainty to the
output. Instead of always outputting the same result with the
same input, the network may output a different result because
of the influence of the noise. Therefore, the uncertainty caused
by the noise could be used to increase the exploratory nature
of the system. With a larger noise, the system is more likely
to explore different options. We could just use the greedy
strategy directly because noises already add randomness to the
system, and we could control this randomness by controlling
the amount of noise added. The noise will decrease during the
training process because of the gradient descent, so the system
will be more stable with more training.

In addition, a noisy net will normally result in a
smoother learning curve compared with the ϵ-greedy strat-
egy.[6]

I. Advantage Actor-Critic (A2C)

Unlike DQN and DDQN, which are based on Q values
estimation, A2C [12] is based on a policy, it is a policy
gradient-based method meaning that instead of learning the
values for state action pair for a greedy policy, the network
learns directly the policy and the output of the network is
probabilities of each action being taken for a particular state.
A2C is a different version of A3C which uses asynchronous
training to do parallel training. In A2C the asynchronous part
is removed and all the actors are using the same policy to
compute the policy updates based on a critic which learns
the value of each state, they are synchronized so that the
aggregated update from all agent is not an aggregation of
update of different policies. This actor-critic method surpassed
the DQN performances on several Atari games.

J. Proximal Policy Optimization (PPO)

One issue present in policy gradient-based method is the
size of the steps between a previous policy and its updated
version, too big a step can lead to training instability and
prevent the policy to converge to a optimal or near-optimal
solution. In off-policy, the ”policy” we try to learn is not the
policy used to gather trajectories this problem is known and

can be compensated by importance sampling. However in on-
policy reinforcement learning, the trajectories are supposed
to be collected by following the policy we try to improve
however parallel asynchronous training could be a problem
for this assumption. By taking this difference in account and
by limiting the divergence between old and current policies,
Trust Region Policy Optimization algorithm (TRPO) [19]
can achieve monotonic improvement when performing policy
iteration. In TRPO the constraint on the divergence of the
old and current policy is a hard constraint, similar to a linear
programming constraint and not a penalty. The idea behind
proximal policy optimization PPO [18] is to generalize the
ideas behind TRPO to make them easier to use and to apply
them to a wider range of problem. For that instead of using the
hard constraint on the divergence between the policies, they
clip the ratio so that the update on the policy parameter is still
controlled. Alongside this clip they add two penalties to the
objective function, one aiming to penalise error of the value
estimation and one penalising an insufficient exploration.

III. METHODOLOGY

A. Benchmarking

Before choosing which type of algorithm we wanted
to test and potentially use for our custom agents later, we
wanted to get a sense of the field. The current top state of the
art papers benchmarked with Atari games are GDI-H3 [5],
MuZero [17], EfficientZero [23], Ape-X [10], Agent57 [2],
IMPALA [4], R2D2 [11], Rainbow, DDQN, and DreamerV2
[7]. Algorithms such as A2C, DQN, PPO, and Distributional
DQN are some of the baselines researchers commonly use. We
attempted to benchmark each of these papers and algorithms
with one game to compare and contrast how each compared
with the other over time (see Figure 4). The game we chose
to use was Space Invaders as it was difficult enough to allow
the complex algorithms time to form but not too complex as
to require more than a few million steps to get good results.

We were especially interested in finding the best per-
forming algorithm that can be trained on a personal computer
and get good results with limited training. We found it took
about 10 hours for 5 million steps so our limit for good
performance evaluation was a maximum of 5 million steps
for an algorithm. Some of these algorithms require a massive
amount of computing to run and we had to keep in mind our
hardware limitations. Additionally, some of these algorithms
had very little documentation. The algorithms we were able to
plot for benchmarking were A2C, DQN, PPO, Distributional
DQN, IMPALA, Rainbow, and Ape-X.

B. Custom Algorithm

Next, we created our own customized DQN agents. As
shown in the next section, Rainbow has the best performance
among all algorithms we tested, so we choose to use it a main
source. In the paper about Rainbow, the author showed the
performance of the Rainbow and the performance of each
based model. However, they failed to show the effects of
combining only two or three algorithms out of those six. Will



a leaner combination of the top performing algorithms work
better or at least be comparable to Rainbow? What is the
difference in performance between two algorithms combined
(custom agents) and six algorithms combined (Rainbow)?
Therefore, for our custom agents, we would want to choose
three algorithms among those six DQN models mentioned
above. We will try different combinations and then compare
with Rainbow and base models.

After careful consideration, we chose to combine and
test Double DQN, Multi-Step DQN, and dueling DQN. Double
DQN has been widely applied and showed great results. Multi-
Step DQN should have a great performance in an early state.
[21] Because of the time and GPU limitation, we will focus on
the early state or a relatively simple training environment. We
chose Dueling DQN because it allows the network to better
differentiate actions from one another. We will choose two out
of these three algorithms to combine for our custom agents.

When we implemented our custom agents, we combined
the certain parts of each model. For DDQN, we used the
part that chooses an action with one Q network and estimates
the state with the other Q network. For Multi-Step DQN, we
extracted its loss calculation method. Instead of using one step,
it calculates the loss with a few steps ahead. For Dueling DQN,
we applied its network structure where it splits Q into two
state functions. We implemented these agents based on this
open-source Github project. [13]

Our original plan was to apply our custom agent to
the space invaders environment. However, after a few tests,
we realized it takes too long to design and test out a new
custom agent on an environment that requires hours to get
the results . Therefore, we decide to switch to a relatively
simple environment - Cartpole. We ran each algorithm with
a fixed amount of frames and compared their performances.
The results are shown in the next section.

IV. RESULTS

A. Benchmarking

Figure 4 shows the performances of algorithms trained
on Space Invaders within a short timeframe. The x-axis is the
number of steps, and the y-axis is the corresponding rewards
gathered.

B. Custom Algorithm

Figure 5 shows the performances of Rainbow and other
different DQN algorithms trained on cartpole. Figure 6 shows
the performance of rainbow and our customized agents. Then,
we also compare each customized agent with the algorithms
it consists of to better show the difference. These results are
shown as Figure 7, 8 and 9. More analysis of these figures
will be included in the discussion section.

V. DISCUSSION

A. Benchmarking

As shown in Figure 4, Rainbow has the best performance
among all the algorithms we tested. Surprisingly, the other two
advanced algorithms, IMPALA and Ape-X, do not outperform

Fig. 4. Benchmark of algorithms on the Space Invaders environment. This
figure was generated with code from [14] and [15].

Fig. 5. Rainbow and other DQN algorithms performances

Fig. 6. Rainbow and customized algorithms performances



Fig. 7. N-step DDQN and its component algorithms performances

Fig. 8. N-step Dueling and its component algorithms performances

Fig. 9. Dueling DDQN and its component algorithms performances

other base algorithms as we expected. The potential reason is
that some algorithms take a long training time to improve
the performance, and they may not perform well at the early
training state. Then other algorithms have a similar result.

B. Custom Algorithm
From Figure 6, we can see the strengths of the Rainbow

algorithm. Even though it doesn’t have the fastest rise, it is
the most stable and smooth algorithm. It reaches and keeps
the maximum scores without any variation. Rainbow definitely
has the best overall performance. The next algorithm that
impresses us is N-step DQN. It rises quickly and is able to
reach the maximum score within the given frame limitation.
Even though it varies a little bit after it converges, it still has
the best performance among all base DQN agents. For the
other three agents, they don’t really achieve a good result.
They can not converge and varies a lot during the training
process. It shows that these three algorithms are not as stable
as Rainbow and N-step DQN at the early stage of the training.

Then we compare the customized agents with Rainbow
as Figure 7. It shows that agents consisting of N-step DQN
both have a quick rise but still have some variations after the
convergence. It means that none of the three DQN algorithms
we selected is the reason for Rainbow’s smooth learning
curve. We believe it is the effect of noisy nets because all
other algorithms focus on improving the training process by
decreasing data needed or more accurate Q estimation. Instead
of using ϵ-greedy, noisy nets adds some random noise or
error to the network to balance exploration and exploitation.
So noisy nets will affect the performance even after the
convergence. Its paper states that it will result in a smoother
training process, and our results prove this statement.

The last thing we did is compare customized agents
with the corresponding component algorithms. Surprisingly,
only the DDQN Dueling algorithm outperforms its original
algorithm and gets a more stable result. Unfortunately, it still
didn’t get to the maximum rewards (200 points). The other
two agents didn’t work as well as the original N-step DQN.
They take a longer time to converge.

In summary, there are two main things we learned from
this project. First of all, N-step DQN works really well for
the early stage or a relatively simple environment. It has
a very quick rise and convergence speed. Secondly, noisy
nets will help smooth the learning curve, especially after the
convergence.

However, there are still some limitations to our project.
The main thing is our environment choice. Because of the
time and resources limit, we can’t apply some hard and
complicated environments. It may limit the performance of
some algorithms like DDQN or Dueling. Then we only tried a
few combinations among the six DQN algorithms used. There
is still more work to do to fully understand the affection of
each model in Rainbow.

VI. CONCLUSION

In this project, we studied some advanced Deep Re-
inforcement Learning algorithms and compared their per-



formances with some base algorithms we learned in class.
We specifically dug deep into the Rainbow algorithm which
consists of 6 improved DQN models because of its outstanding
performance.

Some combinations of Rainbow’s component algorithms
are implemented and evaluated in the cartpole environment.
Unfortunately, we could only use this relatively simple en-
vironment because of the time and resource limit. Some
algorithms like DDQN may not show their full potential
because of the environment selection. That being said, we still
generated some interesting conclusions from the combinations
chosen. We have proved that multi-step DQN works really well
in a simple environment, and noisy nets can help smooth the
overall learning curve with its action selection strategy.

More work could be done in the future by trying
different test environments and combinations of algorithms to
fully understand the effect of each component algorithm in
Rainbow.

REFERENCES

[1] Kristopher De Asis et al. “Multi-step Reinforce-
ment Learning: A Unifying Algorithm”. In: CoRR
abs/1703.01327 (2017). arXiv: 1703.01327. URL: http:
//arxiv.org/abs/1703.01327.

[2] Adrià Puigdomènech Badia et al. “Agent57: Out-
performing the Atari Human Benchmark”. In: CoRR
abs/2003.13350 (2020). arXiv: 2003.13350. URL: https:
//arxiv.org/abs/2003.13350.

[3] Marc G. Bellemare, Will Dabney, and Rémi Munos. “A
Distributional Perspective on Reinforcement Learning”.
In: CoRR abs/1707.06887 (2017). arXiv: 1707.06887.
URL: http://arxiv.org/abs/1707.06887.

[4] Lasse Espeholt et al. “IMPALA: Scalable Distributed
Deep-RL with Importance Weighted Actor-Learner Ar-
chitectures”. In: CoRR abs/1802.01561 (2018). arXiv:
1802.01561. URL: http://arxiv.org/abs/1802.01561.

[5] Jiajun Fan, Changnan Xiao, and Yue Huang. “GDI: Re-
thinking What Makes Reinforcement Learning Different
From Supervised Learning”. In: CoRR abs/2106.06232
(2021). arXiv: 2106.06232. URL: https://arxiv.org/abs/
2106.06232.

[6] Meire Fortunato et al. “Noisy Networks for Explo-
ration”. In: CoRR abs/1706.10295 (2017). arXiv: 1706.
10295. URL: http://arxiv.org/abs/1706.10295.

[7] Danijar Hafner et al. “Mastering Atari with Discrete
World Models”. In: CoRR abs/2010.02193 (2020).
arXiv: 2010.02193. URL: https: / /arxiv.org/abs/2010.
02193.

[8] Hado van Hasselt, Arthur Guez, and David Sil-
ver. “Deep Reinforcement Learning with Double Q-
learning”. In: CoRR abs/1509.06461 (2015). arXiv:
1509.06461. URL: http://arxiv.org/abs/1509.06461.

[9] Matteo Hessel et al. “Rainbow: Combining Improve-
ments in Deep Reinforcement Learning”. In: CoRR
abs/1710.02298 (2017). arXiv: 1710.02298. URL: http:
//arxiv.org/abs/1710.02298.

[10] Dan Horgan et al. “Distributed Prioritized Experience
Replay”. In: CoRR abs/1803.00933 (2018). arXiv: 1803.
00933. URL: http://arxiv.org/abs/1803.00933.

[11] Steven Kapturowski et al. “Recurrent Experience Re-
play in Distributed Reinforcement Learning”. In: In-
ternational Conference on Learning Representations.
2019. URL: https : / / openreview . net / forum ? id =
r1lyTjAqYX.

[12] Volodymyr Mnih et al. “Asynchronous Methods
for Deep Reinforcement Learning”. In: CoRR
abs/1602.01783 (2016). arXiv: 1602 . 01783. URL:
http://arxiv.org/abs/1602.01783.

[13] Jinwoo Park. Rainbow is all you need. https://github.
com/Curt-Park/rainbow-is-all-you-need. 2019.

[14] Antonin Raffin. RL Baselines3 Zoo. https://github.com/
DLR-RM/rl-baselines3-zoo. 2020.

[15] ray project. RL Experiments. https:/ /github.com/ray-
project/rl-experiments. 2020.

[16] Tom Schaul et al. “Prioritized Experience Replay”. In:
abs/1511.05952 (2015). arXiv: 1511.05952. URL: http:
//arxiv.org/abs/1511.05952.

[17] Julian Schrittwieser et al. “Mastering Atari, Go, Chess
and Shogi by Planning with a Learned Model”. In:
CoRR abs/1911.08265 (2019). arXiv: 1911.08265. URL:
http://arxiv.org/abs/1911.08265.

[18] John Schulman et al. “Proximal Policy Optimization
Algorithms”. In: CoRR abs/1707.06347 (2017). arXiv:
1707.06347. URL: http://arxiv.org/abs/1707.06347.

[19] John Schulman et al. “Trust Region Policy Optimiza-
tion”. In: CoRR abs/1502.05477 (2015). arXiv: 1502.
05477. URL: http://arxiv.org/abs/1502.05477.

[20] David Silver et al. “Mastering Chess and Shogi by
Self-Play with a General Reinforcement Learning Algo-
rithm”. In: CoRR abs/1712.01815 (2017). arXiv: 1712.
01815. URL: http://arxiv.org/abs/1712.01815.

[21] Richard S. Sutton. “Learning to predict by the meth-
ods of temporal differences”. In: Machine Learning 3
(1988), pp. 9–44. DOI: https : / / doi . org / 10 . 1007 /
BF00115009. URL: link.springer.com/article/10.1007/
BF00115009.

[22] Ziyu Wang, Nando de Freitas, and Marc Lanctot. “Du-
eling Network Architectures for Deep Reinforcement
Learning”. In: CoRR abs/1511.06581 (2015). arXiv:
1511.06581. URL: http://arxiv.org/abs/1511.06581.

[23] Weirui Ye et al. “Mastering Atari Games with Limited
Data”. In: CoRR abs/2111.00210 (2021). arXiv: 2111.
00210. URL: https://arxiv.org/abs/2111.00210.


